

NON-INVASIVE ALTERNATIVE TO THE 1500 LBS DECK TO HOUSE CONNECTION **ELIMINATES GOING INSIDE THE HOME FOR CONNECTION***

PATENT PENDING

* W/ DIMENSIONAL LUMBER AND HOUSE FLOOR JOISTS PARALLEL TO DECK JOISTS

BASE PLATE PLASTIC ANALYSIS

ENGINEERING ANALYSIS

2009 IRC R301.1.1, R301.1.3, R502.2.2.3 2012 IRC R301.1.1, R301.1.3, R507.2.3

Tu = LOAD ON EACH LAG, = F/2, KIPS

Mu = ULTIMATE MOMENT IN BASE PLATE, KIP*IN

= DISTANCE FROM CENTER OF LAG TO CENTER OF ATR ROD, INCHES

b = NET WIDTH OF PLATE AT BENDING PLANE, IN

Fy = PLATE MATERIAL YIELD STRENGTH, KIP/IN^2

ZX = PLASTIC SECTION MODULUS OF PLATE, IN'3

Zx = Mu/Fy

= PLATE THICKNESS, IN t

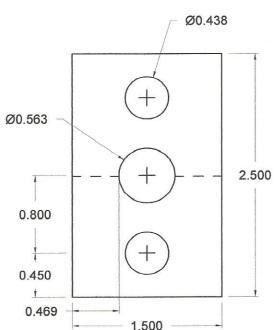
= TOTAL LOAD, KIPS

Tu = 0.75 KIPS

= 0.800 IN

b = 2*0.469 = 0.938, IN

Fy = 36 KSI


 $Zx = (b*t^2)/4$, IN³

Zx = Mu/Fy

= 0.375, IN+

F = 1.5, KIPS

=0.9

A36 STEEL PLATE 0.375" THICK, HDG **ASTM 123**

ENGINEERING CALCULATIONS

Mu = 1.6*1.5*1.6/8 = 0.48 KIP*IN tmin = ((4*0.48) / (0.9*0.938*36)) ^1/2 = 0.251" 0.375" > 0.251"

DESIGN REFERENCE

*ROARK'S FORMULAS FOR STRESS AND STRAIN, 7TH EDITION, TABLE 8.1, 1e *ROARK'S FORMULAS FOR STRESS AND STRAIN, 7TH EDITION, TABLE A1, (2) *AISC 13TH ED., APPENDIX 1 SECT. 1.7